
D-Ai85 544 PROBABILISTIC PERFORMANCE OF A HEURISTIC FOR THE
/

SATISFIABILITY PROBLEM(U INDIANA UNIV AT BLOOMINGTON
DEPT OF COMPUTER SCIENCE J FRANCO ET AL MAY 86 TR -193

UNCLASSIFIEDAFOSR-TR- 7-i3SAFOSR-84-8372 F/ 23 NL

EOM h I~h

1111 1.0.0
t

1.25 1 .A 1140 1.6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Of STANDARDS-1963-A

O-

= R, METTOCUMENTATION PAGE '.E FILE cw

A D-A 185 544 l RESTRICTIVE MARKINGS

- m DISTRIBUTION /AVAILABILITY OF REPORT

DECLASSIFICATION DOWNGRADI Approved for p11"lic - ea e;
2b lF O E distribution unlimited.

4. PERFORMING ORGANIZATION RE, UMBER(S) S. REPORT NUMB5R(D * - 1
6,. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Indian a University (if applicable)S

6c. ADDRESS (City, State, and ZIP Code) 7b, Aj8WjW. State, and ZIP Code)

Bloomington, Indiana 47405 Bldg410
Bolling AFB DC 20332-"4a

8a. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicabl4) AFOSR 84-0372

AFOSR NM
BC.AF ity, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
Bldg 410 ELEMENT NO. NO. NO. ACCESSION NO

Bolling AFB DC 20332-6448 61102F 2304 IA'
11 TITLE (Include Security Classification)

Probabilistic Performance of a Heuristic for the Satisfiability Problem

2. PERSONALAUTHOR(S) John Franco and Yuan Chuan Ho

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) S. PAGE COUNT
preprint FROM R 4TO M L/ May. 1986

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

19 ABSTRACT (Continue on reverie if necessary and identify by block number)

An algorithm for the Satisfiability problem is presented and its probabilistic behav-

ior is analysed when combined with two other algorithms studied earlier. The analysis is

based on an instance distribution which is parameterized to simulate a variety of sample
characteristics. The algorithm dynamically assigns valuer to literals appearing in a given

instance until a satisfying assignment is found or the algorithm "gives up" without de-

termining whether or not a solution exists. It is shown that if n clauses are constructed

independently from r boolean variables where the probability that a variable appears in

a clause as a positive literal is p and as a negative literal is p then almost all randomly

generated instances of Satisfiability are solved in polynomial time if p < .41n(n)/r or (over)

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

0-UNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL 221Z.ELlQPHOI'E (include Area odo 22c. ?9ICE SYMBOL

Maj. John P. Thomas I V-1'-, '':

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF -HIS PGE
All other ed,tions are obsolete.

%% % % ' %'
%. " , . ", ' . 7 t "

19. (continued)

p > ln(n)/r or p = c ln(n)/r, .4 < c < 1 and lim,,,. n'-c/rl - < oo for any c > 0. It

is also shown that if p = cln(n)/r, .4 < c < 1 and limn,,..on- /r = oo then almost all

randomly generated instances of SAT have no solution. Thus the combined algorithm is

very effective in the probabilistic sense on instances of SAT that have solutions.

4

5%

'S

5%*

AFOSR.Th 8 7- 3 ,5

Probabilistic Performance of a Heuristic

for the Satisflability Problem

By

John Franco and Yuan Chuan Ho
Computer Science Department

Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 193

Probabilistic Performance of a Heuristic
for the Satisfiability Problem

by

John Franco and Yuan Chuan Ho

Indiana University

May, 1986

KEYWORDS: Satisfiability, Average Analysis, Probalistic Analysis, Davis-Putnam, NP-complete

This material is based on work supported by the Air Force Office of Scientific Research under
Grant No. AFOSR-84-0372.

This report to appear in Discrete Applied Math.

J -,

ABSTRACT

An algorithm for the Satisfiability problem is presented and its probabilistic behav-
ior is analysed when combined with two other algorithms studied earlier. The analysis is
based on an instance distribution which is parameterized to simulate a variety of sample
characteristics. The algorithm dynamically assigns values to literals appearing in a given

instance until a satisfying assignment is found or the algorithm "gives up" without de-
termining whether or not a solution exists. It is shown that if n clauses are constructed

Aindependently from r boolean variables where the probability that a variable appears in
a clause as a positive literal is p and as a negative literal is p then almost all randomly

generated instances of Satisfiability are solved in polynomial time if p < .41n(n)/r or
p > ln(n)/r or p = cln(n)/r, .4 < c < 1 and limn,, 0 fnl-C/r-E < oo for any e > 0. It

is also shown that if p = cln(n)/r, .4 < c < 1 and limn,r.-n ,Ic/r= oo then almost all
randomly generated instances of SAT have no solution. Thus the combined algorithm is

4very effective in the probabilistic sense on instances of SAT that have solutions.

L '

P, ~ ~ ~ ~ ~ ~ 4 OL, -5 1, M-, : - de

I * ,

*" 1
O,
@4 . . -. , -e ,2 , , , : , . , .-. , '. - , . - , , ¢ ,

V 1. Introduction

The Satisfiability problem (SAT) is the problem of determining whether a given collection
I of disjunctions (clauses) of boolean literals can all be satisfied (have value true) by
some consistent assignment of truth values to the literals of I (truth assignment). SAT is
NP-complete so there is no known worst case efficient algorithm for solving this problem.

However, numerous algorithms for SAT have been shown to solve random instances
of SAT efficiently with high probability under certain conditions. Some of these results
are based on a parameterized input distribution which we denote by J(n, r, p). According

to this distribution a random instance I of SAT consists of n clauses constructed indepen-
dently from a set V of r variables as follows: for each v E V and for all 1 < i < n place
v into the th clause of I as a positive literal (that is, v) with probability p, as a negative
literal (that is, -i) with probability p and leave v and V out of the &t clause with probability
1 - 2p. In this paper, both p and n are functions of r but, for the sake of simplicity, we
write p and n instead of p(r) and n(r). In [10], [12] and [13] the average running time
of several algorithms for SAT is obtained under J(n, r, p). The conditions under which at
least one of those algorithms runs in polynomial average time are as follows:

1) lim,-. rp = 0, n > rln(2)/ - ln((r + 1)p).
2) lim,.oo rp = oo, lim...o p = 0 n > ln(2)e2rp/ep.
3) lim,_. p = 0, np c_< r) c constant.

'-S-
cntat

4) lim 1.1 1/p = polynomial(r), np r-P , c constant.

5) n < cln(r), c constant.

In [6] it was shown that two trivial, polynomial time algorithms nearly always solve

random instances of SAT generated according to J(n, r, p) under conditions which subsume
1), 2) and 4) above. Specifically, consider the following two algorithms:

A,(I)

Construct a random truth assignment t to the variables of I
.5', Check whether t satisfies I

If t satisfies I then return(t)

Else return("give up")

A 2(I):
". .For all clauses c E I

If c contains no literals then return('no solution possible')

Return("give up")

.2..
%° ,2

'WV

- " .. - " • " ' , " ' ' ' " ", 't " ¢ 4" t € " ¢ . -% % , % 0 % . . ",

In A, a random truth assignment is found by choosing the value true for each variable
with probability 1/2 (consequently the value false with probability 1/2) independently
of the assignment of values to other variables. Clearly, generating and checking a truth
assignment can be accomplished in polynomial time and if a truth assignment t is returned

• by A1 (I) then t satsifies I. Clearly, A2 runs in polynomial time. Since no truth assignment

can satisfy a null clause, if A 2(I) returns the expression "no solution possible" then I is
not satisfiable. Thus the collection A1 and A2 solves instance I of SAT in polynomial
time if and only if both do not "give up". In [6] it was shown that A1 gives up with
probability tending to 0 under J(n,r,p) if p > ln(n)/r. It was also shown in [6 that A2
gives up with probability tending to 0 under J(n,r,p) if 1) p < .41n(n)/r and n < 2r or 2)

p < ln(n)/(2r) and n and r are polynomially related. If n > 2' then exhaustive search will
solve instances of SAT in polynomial time so we won't consider this case here. Thus A1

and A 2 collectively are a probabilistically effective method for solving SAT under J(n, r, p)
when p > ln(n)/r or p 5 ln(n)/(2r) and n and r are polynomially related or p < .4ln(n)/r.
One interpretation of this result is that random instances of SAT generated according to

0J(n,r,p) are trivial over the range of p indicated in the previous sentence. Note that
condition 3) above becomes

3a) lim-. p = 0, nln(n) < cafr- , c constant

in the range .41n(n)/r < p < ln(n)/r and 3a) subsumes 5) over that range of p.

Figure 1 shows the relationships between p, r and n for which random instances of
SAT generated according to J(n,r,p) are known to be solved in polynomial time with
probability tending to 1 by some previously analyzed algorithm. Also shown in this figure
is a line marked "SAT BOUNDARY" which divides the parameter space into two regions
such that if the parameters are set to values that correspond to a point to the left of
the line then almost all instances generated are unsatisfiable (more explanation will be
given at the end of section 4). The unbounded region bordered by lines I on the left
and II on the right corresponds to parameter settings that generate instances which are
not solved in polynomial time, almost always, by any previously considered algorithm if
nln(n) > c/rln(r), c constant. In this paper we investigate the question: how hard
are the instances in this region? That is, how hard are the instances generated when

.4 In(n)/r < p < ln(n)/r and n ln(n) > cv/r In(r)? Are the instances in this range of p and
n solved trivially in some other sense? Or, are these instances so hard that no alogrithm
which performs well in some probabilistic sense on these instances exists? Or, are there
three regions of values for p such that in one region trivial instances are predominantly

generated, in the second region non-trivial instances are generated but these can be solved
in probabilistic polynomial time by non-trivial algorithms, and in the third region hard
instances are predominantly generated? These questions are answered, in part, by the

3

oA

results presented in this paper. We consider the probabilistic performance, under J(n, r, p)
and in the range .41n(n)/r < p < ln(n)/r, of an algorithm based on the Davis-Putnam
Procedure.

The Davis-Putnam Procedure (DPP) [5] is a well known, much studied method for
solving instances of SAT and is the basis of most algorithms for SAT. During execution
of DPP truth values are assigned to variables sequentially. Each assignment results in
some satisfied clauses and some falsified literals within clauses that are not satisfied. A
clause which is not satisfied by the current partial assignment and contains exactly one
literal that has not been falsified is called a unit clause. An unassigned literal whose
complement does not appear in any unsatisfied clause is called a pure literal. In expressing
DPP it is convenient to regard clauses to be sets of non-falsified literals and instances
to be multisets of clauses. Also, if v is a literal (positive or negative) it is convenient
to use the notation comp(v) to mean the literal which is complementary to v. Let L -
{vli, V2,... , vi, v1 ,) ,V. , i ,.} be a set of 2r literals from which clauses are composed initially
and let I be a collection of clauses. The Davis-Putnam procedure is stated as follows:

DPP(I, L):

If I = 4) then return("satisfiable")
If 3c E I such that c = 4) then return("unsatisfiable")
While there is a unit clause {v} in I

I +- {c - {comp(v)} : c E I and v c}

L +- L - {v, comp(v)}
While there is a pure literal v in I

SI - {c: c E I and v 0 c}

L +- L - f{v, comp(v)}

Choose a literal v from L

A/ 4 {c - {comp(v)} : c E I and v € c}
124- {c - {v} : c E I and comp(v) € c}

L L- L - {vcomp(v)}
If DPP(1 , L)="satisfiable" or DPP(I2 , L)="satisfiable"

Then return("satisfiable") else return("unsatisfiable")

The algorithm we analyze in this paper is the following

4

0, ._

A 3(I):

While 154 oandVcEI, C#4

If there is a unit clause {u} E I then v +- u

Else choose a literal v randomly from L

I.- {c - {comp(v)} c E I and v c}

L +- L - {v, comp(v)}
If I = 4, then return("satisfiable")
Else return("give up")

Implicit in both DPP and A3 is the assignment of value true to literal v and, therefore,
the assignment of false to comp(v). DPP and A3 differ in that literals are never given

more than one value during execution of A3 but literals may be assigned the values true and
false at different points during execution of DPP; that is, DPP contains a backtracking
component whereas A3 does not. Thus, A3 is a polynomial time algorithm whereas DPP

requires exponential time on some inputs [9]. However, A3 is not guaranteed to find a
truth assignment (implicitly) which satisfies a given instance of SAT if one exists. But,

4if A3 does not "give up" then the truth assignment found implicitly by A3 satisfies the
instance input to A3 . Another difference between A3 and DPP is that As does not regard
pure literals as special.

In this paper we show that AI(I), A2 (I) and A3 (I) run concurrently on a random
instance I of SAT generated according to J(n, r,p) "give up" with probability tending to
0 if n < 2' and either

1) p : .41n(n)/r or

2) p _ ln(n)/r or

3) p - cln(n)/r, .4 < c < 1 and imn,,,,. ln(r) In2 (n)nl-/r = 0.

',J5

V.,

4% 4

2. Other Probabilistic Results for SAT

In addition to the results stated in the introduction, a number of probabilistic results on

algorithms for SAT have been obtained under a constant-clause-size model which we refer

to as M(n, r, k). Under M(n, r, k) a random instance of SAT contains n clauses selected

uniformly, independently and with replacement from Qk(r) where Qk(r) is the set of all

possible clauses containing exactly k literals taken from r variables and their complements

such that no pair of literals in the same clause is complementary. It can easily be shown

'. that if limn,,-.. n/r < - ln(2)/ ln(1 - 2- k) then the expected number of satisfying truth

assignments is greater than Bn where B > 1 and if limf,,.-.. n/r > -ln(2)/ln(l - 2- k)

then the expected number of satisfying truth assignments is less than Bn where B < 1.

Therefore, since k is independent of n and r, the case limn,,,..o. n/r = a, where a is a

constant, is important in M. Note that lim,,. n/r = - ln(2)/ ln(1 - 2
- k) ; 2 k ln(2)

represents a "flip point" in that if the ratio of n to r is greater than the flip point then

p:" instances are nearly always unsatisfiable and if the ratio of n to r is less than the flip point

then the average number of satisfying truth assignments per instance is exponential in r. If

.* . k = 3 (then the problem becomes the 3-Satisfiability problem which is still NP-complete)

the flip point is at n/r = 5.19.

In [3] it is shown that A3 finds solutions to random instances of SAT under M(n, r, k)

with probability bounded from below by a constant if l n/r < 2 - ((k - 1)/(k -

2))"-/k. A3 may be improved (and generalized) if the chosen literal is taken from a clause

in I containing the smallest number of literals of all clauses in I instead of randomly if

there are no unit clauses in I. The resulting generalization is shown in [3] to find solutions

to random instances of SAT under M(n, r,k) with probability bounded from below by a

constant iflimn, .oon/r < 3.08*2k-2((k-1)/(k-2))k- 2 /(k+1) - .75 for 4 < k < 40 and

with probability tending to 1 if limn,,--.... n/r < 1.845*2k-((k-1)/(k-2))k- 2 /(k+l)-.75

for 4 < k < 40. Algorithm A3 may also be improved by choosing a variable randomly

(when there is no unit clause in I) instead of a literal and "assigning" to it the value

which satisfies most clauses. In [2] it was shown that this improvement allowed A3 to

find solutions to random instances of SAT under M(n, r, 3) with probability bounded from

- below by a constant if limn,,-.o n/r < 2.9. Without the improvement A3 has the same

• , .- kind of performance if limn,,r.-o n/r < 2.66 (also in [2]).

Finally, in [11] it is shown that the expected number of branches in analytic tableaux

analysis in propositional calculus is exponential in the number of occurrences of the con-

nectives and and or when instances are generated equally likely and are such that and, or

and not are the only connectives and negation is applied only to atomic formulas.

6

@4

-~W9 -fl ~ ff -f - - -

3. Analysis of A3 under J(n,r,p)

In this section it is shown that if instances of SAT are generated according to J(n,r,p)

and n < 2r then the probability that A1 , A2 and A3 "give up" tends to 0 as n,r --- oo if

1) p > ln(n)/r or

2) p < .41n(n)/r or

3) p = cln(n)/r, .4 < c < 1, and limn,r,. ln(r)In2(n)n-c/r = 0.

We already know that A2 "gives up" with probability tending to 0 if p < .4 ln(n)/r

and n < 2'. We also know that A, "gives up" with probability tending to 0 if p _ ln(n)/r.

Therefore, we need only find a similar result for A3 in the range p = cln(n)/r, .4 < c < 1,
and and limn,,--. in(r) In 2(n)n-c/r = 0. The following two paragraphs give a rough idea

of how the analysis proceeds.

At the start of each iteration of A3 there is a collection I of clauses to be processed.

During each iteration of algorithm A3 a literal is chosen, clauses in I containing that literal

are removed from I and occurrences of the literal which is complementary to the chosen

literal are removed from clauses in I. Let Ci(j) be the collection of clauses in I containing
exactly i literals at the start of the j + I" iteration. After the j + 1' literal is chosen
there is a flow of clauses into C1(j + 1) and out of Ci(j). The outward flow is the collection

of clauses that had contained i literals prior to the j + 1' iteration but either the chosen

literal or its complement was one of them. The inward flow is the collection of clauses that
had contained i + 1 literals prior to the j + 1" iteration but a literal complementary to the
chosen literal was one of them. Clauses in Ci(j) that are also in Ci(j + 1) are not included

in the flow to Ci(j + 1). Since each clause can have a maximum of r literals, there is no
inward flow of clauses to C,(j) for any j. Algorithm A3 "gives up" only if some clause

in I becomes null at some iteration of A 3 or the given instance contains a null clause. A
clause c will become null only if c is a unit clause, there is another unit clause in I which

contains the literal that is complementary to c and that literal is chosen on some iteration.

Thus, if A 3 is to "give up" with low probability, the probability that a pair of unit clauses

is complementary must be low for any j and the probability that a null clause exists in

the given instance must be low. The latter probability can easily be calculated and shown

to be low if p > ln(n)/(2r). The former probability is low if the average flow of clauses

into CI(j) is less than 1 for all 0 < j _ r. This is because there is a flow out of CI(j)
of at least 1 whenever there is a clause in Ci(j) so the average number of unit clauses

in CI(j) will be bounded by a constant if the average flow into C1 (l), 0 < 1 < j - 1, is
less than one clause per iteration. If the average number of clauses in CI(j) is bounded

by a constant then the probability that a complementary pair of unit clauses appears in
C1 (j) is bounded from above by a constant. This constant can be made arbitrarily small
by appropriately reducing the flow into Ci(j) for all j. Note that if the average number

7

6

,FJW

of clauses in CI(j) is bounded by a constant then the average flow of clauses out of CI(j)

will be very close to one clause per iteration when at least one clause is in C1(j). Thus, if

the average flow into CI(j) is greater than one clause per iteration for ar iterations where

a > 0 then the average number of clauses in C1 (j) will increase and the liklihood that at

least one complementary pair of unit clauses exists will become high.

We proceed with the analysis of A3 by developing a set of flow equations for Ci(j)
for all 1 < i < r and 0 < j _< r, solving them, and finding the conditions which guarantee
that the average flow into C1(j) is small for all j provided .41n(n)/r < p < ln(n)/r. By

making use of some results from queueing theory these are then shown to be the conditions

under which A3 "gives up" with probability bounded from above by a term tending to 0

as n, r --* oo. The flow equations are based on the following theorem.

Theorem 1:

Given ICj(j)i = ni(j), for all 1 < i < r - j, the clauses in Ci(j) are distributed
according to M(n,(j), r - j, i) independently of the clauses in C1(j), 1 $ i.

Proof:
• -p

This is certainly true for the case j = 0. Suppose it is true for all 0 < j m<. There are

two ways the m + 1" literal is chosen in A3 : randomly from C(m) if IC (m) 1 or

randomly from the set of unassigned literals. Consider the second case. By hypothesis,
if hi clauses of Ci(m) contain the chosen literal or its complement, the remaining
ni(m) - h, clauses of Ci(m) are distributed according to M(ni(m) - hi,r - m - 1,i).

Also, if gi+I clauses of Cj+ 1 (m) contain the complement of the chosen literal, stripping

the complement of the chosen literal from those clauses results in a set of gi+l clauses

distributed according to M(gi+i,r - m - 1,i). Combining the second set of clauses
with the remainder of the first set of clauses results in a set of n(m) - hi + gi clauses

distributed according to M(ni(m) - hi +gi, r -m- 1, i) = M(ni(m + 1), r - (m + 1),i).
Now consider the case that a literal appearing in a unit clause is chosen randomly
from the set of all such literals. There is one unit clause c which contains this literal.

The remaining unit clauses are independent of c and therefore the chosen literal.

Futhermore, all clauses in C,(m), m > 1, are independent of c. Hence the previous

argument applies. This establishes the result.

We can now develop a set of recurrence relations for the expected number of clauses

in Ci(j) for all 1 < ij _ r. From the solution to these recurrence relations we will obtain

an expression for the expected flow of clauses into CI(j) for all 1 < j _5 r. Then we will

find the conditions which guarantee that this expectation is small enough in the limit. Let

8

6§0-'

Ef n,(j)} be the average number of clauses in Ci(j) at the start of the j + let1 iteration of

A3 . Let Ejz1 (j)} be the average number of clauses that flow out from Ci(j) as a result of
choosing the j + 1" literal. Let E{wi(j)} be the average flow of clauses into Cj(j + 1) as

a result of choosing the j + 1l' literal. Then

Ejn1 (j + 1)} = Ejn,(j)} + E{wj(j)} - Ejzj(j)}.()

N Let
00

E{E{z,(j)Ini(j)}} =ZEjz,(j)jnj(j) = l1pr(n,(j) =1).

1=0

Then, for all 2 < i <_

Ejz,(j)} = E{Ejzj(j)jnj(j)}}

i *1Ip~ij i * E{nj(j)}

1=0

because of theorem 1. Also, for all 1 < i < r

Ejwj,(j)} = E{E{wj(j)Inj+i(j)}

00(i+)*l(. 1 _ (i+i1) * E ni+I (j)}

Z= 2(r -j) 2(r -j)

and

EfWr(j)} =0.

Therefore (1), for 2 < i < r, can be written

Efn,(j + 1)1 = Efnj(y)} + (i + 1) *Efni,(j)} _i *Ejnj(j)} (2)
2(r - j) r - j

and
-~E{nr(y + 1)} = Ejnr(j)} _ r * Ef nr(j)} (3)

r - j

In order to solve equations (2) and (3) we need the boundary conditions E{nj(O)} for

2 < i<r.

Lemma 1:

Ejnj(0)} = r(2p)'(l - 2p)r-in i = 1)2, ... I

9

C, r-

O-

Proof:

,.
Since 2p is the probability that a literal associated with a particular variable is con-

tained in a particular clause of a given instance I and since literals are placed in
clauses independently, the probability that a clause of I has exactly i literals is
(")(2p)'(1 - 2 p)r - . The desired expectation is the product of the number of clauses

,- in an instance, n, and that probability.

The required bounds on solutions to (2) and (3) with the boundary conditions given
in lemma 1 are given in theorem 2. In theorem 2 we use the convention that () 0 if
W > X.

Theorem 2:

For all .4 1n()/r < p < ln()/r, 0 < j <r 2 < i < r

:£. r - j

E~nji (2p)'(1 - pjl- prij.

Proof:

The proof is by induction. The hypothesis is true for j 0 since E{n(0)} =

(.)(2p)'(1 - 2p)"-'n and for i = r since E{n,(j)} = 0 for all 1 < j. The hypothesis is
also true for i > r - j since E{n,(j)} = 0 in that range. Now suppose the hypothesis
is true for all a < i < r, 0 < < b and a+1 < i < r, b < j < r-a where ais
any integer greater than or equal to 2 and less than or equal to r and b is any integer

greater than or equal to 0 and less than or equal to r - a. We show that this implies
it is also true for i = a and j b -- 1. By applying the hypothesis to equation (2) we

-- -10

have

Ean.(b + 1)} r - b (2p)*(1 - p)'(1 - 2p)t-ab 1- a) n

+ a) -

+ (r -- b- 1) (2p)0(l _ p)b(1 _ 2p)r-a-b-n

+ b - 1 (2 p) (_ P)b(- 2p) -a-b-I

= (r - b - 1) (2p)0 (1 _ p)b(1 - 2p),.-_-b_ 1 ((1 - 2p) + p) n

= (r - - 1) (2p)a(l _ p)b+I(1 - 2p) rO -b-In.
\ a

* The main result is stated as follows.

Theorem 3:

The probability that A1 , A2 and A 3 "give up" when concurrently applied to a random

instance of SAT generated according to J(n,r,p) tends to 0 as n,r -+ oo if n < 2r

and either of the following three conditions hold:

1. p < .41n(n)/r

2. p > ln(n)/r

3. p = cln(n)/r, .4 < c < 1, and limn,,,.ln(r)In2(n)n'-c/r = 0.

Proof:

Since A2 does not "give up" if at least one null clause is present in the given instance

of SAT and since A1 and A 2 perform as needed if p > ln(n)/r and p : .41n(n)/r we
need only show that A 3 "gives up" on some iteration with probability tending to 0 if

.41n(n)/r < p < ln(n)/r and limn,,...oln(r)ln 2(n)n1-c/r = 0. From theorem 2 we

have

E{wj(j)} =} - 2(r - j - 1)p 2 (1 - p)'(l - 2p)r-2-in. (4)

By setting the derivative of (4) to zero we find that E{wl(j)} has a maximum at

j = j. = r - 1 - 1/(ln(l - p) - ln(l - 2p)). Substituting jo for j in (4) gives

2p2(1 p)r-I - 2p Wip)n(-1

Efw=(jo)} =n(1 - p) - ln(1 - 2p) _n. (5)
J11

Since In(1 - p) - In(1 - 2p) = p + O(p 2), p = cln(n)/r, .4 < c < 1 and n is not

exponential in r we can write (5) as

E{w(jo)} =

2c ln(n) 1 - (
rr r"7

If limn,._.0 0 In(r) In 2(n)n'-c/r 0 we have

lir In(r)ln(n)E{w,(jo)} = 0. (6)
fnlr-,,,

The probability that a complementary pair of unit clauses appears during execution

of A3 is less than the sum over all j of the probabilities that a complementary pair

appears during iteration j. The probability that a complementary pair appears during

iteration j is less than the expected number of complementary pairs generated at

iteration j. Therefore the probability that A3 "gives up" is

E{w2(j + 1)}/2 + E{nx(j) * w,(j + 1)}

2(r -j)

First consider the E{nl(j) * w 1(j + 1)} terms. Let p be the list of literals chosen

during execution of A3 . Let Np(j) be the collection of clauses in the original instance

of SAT which become unit clauses and from which literals are chosen because they

become unit clauses during the first j literal choices of p. Clauses in the original

instance of SAT that correspond to clauses that flow into C 1(j) contain an unchosen

*ii} literal, the complement of the jth chosen literal and possibly some literals which are

all complementary to chosen literals. Therefore, the probability, denoted gp(r,p,j),

that a particular clause of the original instance of SAT, which is not in Np(j), flows

into CI(j) given p is

gp(r,p,j) = 2p2(r - j)(1 - 2p)r-j(1 - p)3 . (8)

The number of such clauses is binomially distributed with parameters n - INp(j)l
and g(r,p,j) since all clauses are constructed independently. Using the Chernoff

bound for binomial distributions [14], and realizing that the bound is maximum if

- INp(j)i = 0, the probability that the number of clauses flowing into CI(j) is greater

than ln(n) is less than n-Iz(,n) if limnr.0 0,, ln(r)n 2 (n)n-c/r = 0. Therefore

Enj(* w (j + 1)} ln(n)E{ni(j)} + n(9n())

12

-

<.'K Proceeding in the same way for the E{wl(j)} terms results in
n2

E{w2(j)} < ln(n)E{wi(j)} + (10)

We only need to find E{nl(j)}. Since tvi(0) = 0, w1 (r -1) =0 and at least one

unit clause is removed on any iteration that unit clauses are present, we may use the

following inequality and equation for a work conserving, non-preemptive single server

, queueing system in which each unit of time is an iteration of A3 :

E'{W} E'{n} + 1 (11)

E{nl} = E{Iw} * E'{W} (12)

Inequality (12) is Little's law and (11) comes from [4]. In this queueing system "ser-

viced jobs" are unit clauses that are removed. The maximum residual "service time"

*observed by a clause when it becomes a unit clause (enters the system) is one it-

eration. In (11) and (12) E*{W} is the average number of iterations that a unit

.. clause waits before it is removed if the expected number of unit clauses present on

*any iteration were equal to the maximum expected number of unit clauses present

over all j, 0 < j :_ r - 1. E*{nl} is the maximum expected number of unit clauses

present over all j, 0 < j !_ r - 1. Finally, E*{wi} is the maximum expected flow

into the collection of unit clauses over all j, 0 < j _ r - 1. Both (11) and (12) are

independent of the order in which unit clauses are removed and distribution of nl(j)

and w(j). Both (11) and (12) are valid only if E*Iwl} < 1 and this is the case if

limn,,_,.oln(r) ln 2(n)n'-c/r = 0 because of (6). Combining (11) and (12) gives

-E{n} < E'fwl} (13)-1 - E*I{l}"

Combining (7), (9), (10) and (13) we get that, in the limit, (7) is less than

K ln(n)E1wl} r < Kln(n)ln(r)E* w 1 (14)
j=O

* where K is some constant greater than zero. From (6) we have that (14) tends to 0

as n,r --+ oo. Thus, the probability that A3 "gives up" when p = cln(n)/r, .4 < c < 1

* and limn,,...o ln(r)ln2(n)n-c/r = 0 tends to 0 as n,r --+ oo.

13

- -~UP - *t-.

K

4. Where A3 Fails

In the previous section it was shown that A3 "gives up" with probability tending to 0 ifp =

cln(n)/r, .4 < c < 1, and lim,,,,..,ln(r)ln2(n)n'-c/r = 0. In this section we show that

this result is tight to within the factor In(r) In(n). That is, we show that A 3 "gives up" with

prouability tending to 1 if p = cln(n)/r, .4 < c < 1, l ln(n)nl-c/r > e(1 + "7)/c,
-f > O, and n < for any 6 > 0. We also show that ifp = cln(n)/r, .4 < c < 1, and

limn,r-.oo n1-C/r = oc then the probability that a random instance is unsatisfiable tends

to 1. Thus A3 does not give up with probability tending to 1 over almost all relationships

between n and r that admit satisfiable instances when p = cln(n)/r, .4 < c <1.

Recall that

E{wi(j)} = 2(r - j - 1)p'(1 - p)l(- 2-jn

and E{wl(j)} is maximum at j = j. = r-l-r/(cln(n)) (the lower order terms are removed
to avoid unnecessary clutter). Consider the interval jo-r/(2cln(n)) < j < jo+r/(2cln(n))

which we refer to as J.. It is straightforward to verify that E{wi(j)} > 1 +7 for any -y > 0
at the endpoints of J0 if limn,,_.ln(n)n-C/r > e2 (1 + 7/)/c. Since E{wz(j)} has one

maximum (at j = j.), if E{wi(j)} > 1 +7 at both endpoints of J. then E{wl(j)} > 1 +7

at all points internal to Jo. Then, for at least r/(cln(n)) iterations the average flow into the
set of unit clauses is greater than 1 + 7. Suppose that, on at least r 6/2 of those iterations,
more than one clause is eliminated from the set of unit clauses. Since unit clauses are

independent, the probability that a set of at least two unit clauses eliminated on some
iteration of A3 contains a complementary pair of literals is at least 1/2. Therefore the
probability that at least one set of unit clauses contains a complementary pair of unit
clauses (A 3 gives up in this case) is at least 1 - (1/2)r'/' which tends to 1. Now suppose

that more than one clause is eliminated from the set of unit clauses on no more than r6 /2

iterations of A3 . Using the Chernoff bound for binomial distributions, again, we find that
the probability that more than r614 unit clauses are eliminated on any iteration is less than

e - " 2 . Then the probability that more than one clause is eliminated from the set of unit

clauses on at least one of r61 2 iterations is less than r6/2e - ra/" which tends to 0. Thus,
the average number of clauses eliminated during the iterations corresponding to J0 is less
than r6 12 with probability tending to 1. This implies that the average number of clauses

remaining at the j = j, = r - 1 - r/(2cln(n)) iteration is greater than r/ln(n) - r6/2 . It

%: is straightforward to show that this and the assumption that n < 2" /3 imply the number
of clauses in the set of unit clauses is at least (r/ ln(n))3 / 4 in the limit at j = j. with

probability tending to 1. The number of variables not assigned values at that iteration

is r/21n(n). Since all unit clauses are independent we may use the result of [1] which
says that the probability that an instance of 1-SAT (one literal per clause) containing i

14

-@.

clauses composed from variables is unsatisfiable with probability tending to 1 if A. > v/

and conclude that at the j = ju iteration there is at least one pair of complementary unit

clauses (A3 gives up in this case, also) with probability tending to 1. This argument shows

Theorem 4:

Let c, - and b be any constants such that .4 < c < 1, -y > 0 and 6 > 0. Ifp = cln(n)/r,

n < 2t 1 ',and limn,,..o ln(n)nl - c/r > e(l+-f)/c then A 3 "gives up" with probability

tending to 1 as n, r -* oo.

The next theorem gives a condition under which random instances of SAT are unsat-

isfiable with probability tending to 1.

Theorem 5:

Let c be a constant such that .4 < c < 1. If p = cln(n)/r and

limn,r.-oo n /r = oo then an instance of SAT generated according to J(n,r,p) is

unsatisfiable with probability tending to 1.

Proof:

Let t be a random truth assignment to the variables of V. The probability that a

random clause has value true under t is the probability that at least one literal in

the clause is made true by t. This is one minus the probability that none of the

literals is made true. The probability that none of the literals is made true by t

is (1 - p) t . Hence, the probability that a random clause has value true under t is

1 - (1 - p). The probability that n clauses chosen independently have value true

is (1 - (1 - p)r)n. Therefore, the average number of truth assignments satisfying all

clauses is 2'(1 - (1 - p)r)n*. Since p = cln(n)/r this is e"tn(2)e - nl - e as n,r -+ oo.

But this expression tends to zero if imn,,-.o n l-C/r = oo. Since the average number
of satisfying truth assignments is an upper bound for the probability that there is at

least one satisfying truth assignment, the theorem is proved.

From theorems 3 and 5 we have that if p = cln(n)/r, .4 < c < 1 and n < 2r then a

- random instance of SAT generated according to J(n,r,p) almost never has a solution if

limn,,-.oo n- /r = oo but a solution will almost always be found by A3 if, for any e > 0,

limn,r-oo nl-C/r < oo. These conditions define the line called "SAT BOUNDARY" in

Figure 1 such that points to the right of that line (limn,t,. nI-C/r' - ' < oo) correspond to

sets of parameter values that result either in almost all random instances being satisfiable

or containing a null clause, and all points to the left of that line correspond to values

leading to the generation of unsatisfiable instances, almost always. Since A, nearly always

finds a solution when p > ln(n)/r and since almost all random instances are unsatisfiable

when p < .4ln(n)/r, the collection of algorithms mentioned here has been shown to be

very effective in finding solutions to random instances of SAT when at least one solution

exists.

5. Conclusion

We have shown that the combination of algorithms A1 , A 2 and A3 solve random instances of

SAT generated according to J(n,r,p) with probability tending to 1 as n,r - oo as long as

p < .41n(n)/r or p _> ln(n)/r or p = cln(n)/r, .4 < c < 1 and liMn,,.ln(r)n2(n)n-c/r =

0. The region of the parameter space now known, but not previously known, to correspond

to instances which can be solved in polynomial time almost always is shown shaded in Fig-

ure 1. Noting the relationship between the shaded area, the area to the right of II and

the "SAT BOUNDARY" in Figure 1, we see that no algorithm for finding a jatifying

truth assignment, when one exists, can perform much better than A3 . The only region of

the input model parameters not yet known to be covered by a fast algorithm with good

probabilistic performance is p = cln(n)/r, .4 < c < 1 and limn,,-. ln(r)In 2(n)n'-c/r > 0

(bounded by I and the "SAT BOUNDARY" line in Figure 1). Instances generated in this

region of the parameter space are almost always unsatisfiable.

:2 The result presented here represents an interesting improvement over previous results.

According to the best previous result, bactracking with the pure literal rule runs in poly-

nomial average time when nln(n) 5 a 1ln(r), a constant, in the range .41n(n)/r < p <

ln(n)/r. This means np, the average number of clauses containing a variable randomly

chosen from the given set of r variables, is less than a constant times V/-Ir)/r. Since the

number of clauses containing a particular variable is binomially distributed, we may use

the chernoff bound for binomial distributions and find that the probability that a variable
appears in more than one clause is less than e-V 7 t) Since variables appear in clauses

independently, the probability that all variables are in at most one clause is greater than
(- e-/) which tends to 1 as r - oo. Thus, almost all instances in the range
nln(n) !_ cV'Tri), .41n(n)/r < p < ln(n)/r have no variable present in more than one

N, clause. Such instances are probably not very interesting and can be solved easily by as-

signing the value true to every literal in the instance. On the other hand examples of

regions in which almost every random instance of SAT may be solved in polynomial time

by the algorithms presented here are p = .41n(n)/r and n = o(r s /3) or p = .51n(n)/r and

n = o(r 2) or p = .751n(n)/r and n = o(r 4) or p _> ln(n)/r. In all these examples the

average number of clauses containing a particular literal may be increasing with r and n.

Finally, we comment that our result is much stronger than a similar result obtained

16

in [8] since that result required p to be fixed while our result holds even if p tends to 0.

To see the difference in the proper perspective notice that if p is fixed then the average

number of literals in a clause is G(r). However, our results hold even if the average number
of literals in a clause is o(r) or o(n). The most interesting instances have e(log(n)) literals

per clause, on the average (these are generated in the vicinity of the "SAT BOUNDARY"

ine of Figure 1). Our results apply to such instances whereas the results of [8] do not if n
and r are polynomially related (in fact, those results apply only to instances which have

far more literals per clause and are "very" satisfiable).

,1.7

17

6. References

1. Chao, M.T., Probabilistic Analysis and Performance Measurement of Algorithms for
the Satisfiability Problem, Ph. D. thesis, Case Western Reserve University, Cleveland,

Ohio (1985).

2. Chao, M.T. and Franco, J., "Probabilistic analysis of two 'euristics for the 3-satisfiability
problem," SIAM J. Comput. 15 (1986), pp. 1106-1118.

3. Chao, M.T. and Franco, J., "Probabilistic analysis of a generalization of the unit
clause literal selection heuristic for the k-satisfiability problem," Tech. Report No.
165, Indiana University (1985).

4. Cooper, R.B., Introduction to Queueing Theory, MacMillan, New York (1972), p.

163.

5. Davis, M. and Putnam, H., "A computing procedure for quantification theory," J.ACM
7' (1960), pp. 201-215.

* 6. Franco, J., "On the probabilistic performance of algorithms for the satisfiability prob-
" lem," Information Processing Letters 23 (1986), pp. 103-106.

7. Franco, 3., "Probabilistic analysis of the pure literal heuristic for the satisfiability
problem," Annals of Operations Research 1 (1984), pp. 273-289.

8. Franco, J. and Paull, M., "Probabilistic analysis of the Davis- Putnam Procedure for
solving the satisfiability problem," Discrete Applied Mathematics 5 (1983), pp. 77-87.

9. Galil, Z., " On the complexity of regular resolution and the Davis-Putnam Procedure,"

Theoretical Computer Science 4 (1977), pp. 23-46.

10. Goldberg, A., Purdom, P.W. and Brown, C.A., "Average time analyses of simplified
Davis-Putnam Procedures," Information Processing Letters 15 (1982), pp. 72-75.

11. Plotkin, J.M. and Rosenthal, J.W., "On the expected number of branches in analytic
tableaux analysis in propositional calculus," Notices Amer. Math. Soc. 25 (1978)

A-437.

12. Purdom, P.W., "Search rearrangement bactracking and polynomial average time,"
Artificial Intelligence 21 (1983), pp. 117-133.

13. Purdom, P.W. and Brown, C.A., "The pure literal rule and polynomial average time,"

SIAM J. Comput. 14 (1985), pp. 943-953.

14. Purdom, P.W. and Brown, C.A., The Analysis of Algorithms, Holt, Rinehart and
Winston, New York (1985), p. 465.

18

.U

n

A

4e .

epr

Figure 1: The parameter space for which A1 , A2 and A3 almost always solve a random instance

'." of SAT generated under J(n, r, k). A2 works well, in probability, in the region to the
left of curve I. A, works weU, in probability, in the region to the right of II. A3 works
well, in probability, in the hatched region.

-S

Approvedi for p- ,bljc re1c .asa;
distri but io.i 11:1irited.

AIR FORCE%EACHEr

~ ~d~cj rep 11 haAL TO OTIC
1)Q for hasi~ el beenrieviwdads

jniied.S n
c Ir formation ivso

0;

.'. /'
:::.

0*l, 0-- -o -. S o 5 0 **• .-- S S• S* -9. . :5W.. . '.. -9.4

